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Abstract

A simple model is developed to study the process of combined forced and natural convection _lm condensation from
downward ~owing vapors onto a horizontal tube with variable wall temperature\ including e}ects of the pressure
gradient and vapor shear stress[ In the present work\ the result of mean heat transfer shows that\ for forced!convection
_lm condensation\ as the wall temperature variation amplitude\ A\ increases\ the value of Nu Re−0:1\ with inclusion of
the pressure gradient e}ect\ goes down appreciably[ However\ the value of Nu Re−0:1 when ignoring the pressure gradient
e}ect will increase with A at a smaller pace[ As for natural!convection _lm condensation\ the mean heat transfer
coe.cients remain almost uniform for varying A\ which are in good agreement with the previous work[ Þ 0888 Elsevier
Science Ltd[ All rights reserved[
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Nomenclature

A the wall temperature variation amplitude
CP speci_c heat of condensate at constant pressure
D diameter of circular tube
F dimensionless parameter\ "Ra:Ja#:Re1

` acceleration due to gravity
h condensing heat transfer coe.cient at angle f

h¹ mean value of condensing heat transfer coe.cient
hfg latent heat of condensate
Ja Jakob number\ CPDT:h?fg
k thermal conductivity of condensate
mý condensate mass ~ux "per unit area#
Nu local Nusselt number hD:k
Nu mean Nusselt number h¹D:k
p static pressure of condensate
P the dimensionless pressure gradient parameter
"rv:r#Pr:Ja
Pr Prandtl number
r radius of tube
Ra Rayleigh number\ r"r−rv#` Pr D2:m1

� Corresponding author[

Re two!phase mean Reynolds number rDU�:m
Tsat saturation temperature of vapor
Tw wall temperature
ue the tangential vapor velocity at the edge of the
boundary layer
U� the vapor velocity of the main free stream
u velocity component in x!direction
x coordinate measuring distance along circumference
from top of tube
y coordinate normal to the elliptical surface[

Greek symbols
d local thickness of condensate _lm
d� dimensionless thickness of condensate _lm
m absolute viscosity of condensate
r density of condensate
rv density of vapor
td interface vapor shear
f the angle between the tangent to tube surface and the
normal to direction of gravity[

Subscripts
c critical condition
sat saturation
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v vapor
w tube wall[

Superscripts
� dimensionless
Ð averaged
"Note] when not subscripted\ a property is taken to be
that of the liquid phase[#

0[ Introduction

Filmwise condensation heat transfer is widely applied
in power plant systems\ air!conditioning equipment and
chemical industrial process equipment[ Since the pion!
eering investigator Nusselt ð0Ł\ the problem of vapor con!
densation on horizontal cylinders has received con!
siderable attention^ a number of workers ð1\ 2Ł modi_ed
the simple Nusselt theory[ One of the important factors
related to the problem and greatly in~uencing the mech!
anism of heat transfer is the velocity of the oncoming
vapor[ When the vapor surrounding a horizontal tube is
moving at a high velocity\ the problem becomes a type
of forced convection _lm condensation and the analysis
must consider two complicated factors] "0# the interfacial
vapor shear forces\ and "1# the e}ect of condensate or
vapor separation must be accurately treated[

Shekriladze and Gomelauri ð3Ł realized that the pri!
mary contribution to the surface shear is due to the
change in momentum across the interface[ Hence\ they
equated shear stress at interface to change in momentum
~ux of the condensing vapor so that they might eliminate
the momentum equation in the vapor phase[ They _rst
proposed that the mean heat transfer coe.cient decreases
by 24) if the separation point occurs at 71> and agrees
with the experimental data[ Denny and Mills ð4Ł applied
the asymptotic shear model of Shekriladze and Gome!
lauri to condensation on a circular cylinder\ ignoring the
pressure gradient\ and obtained results very close to the
boundary!layer solutions "within 0Ð1)#[ Fujii et al[ ð5Ł
studied the equation of motion in the vapor boundary
layer[ However\ they approximated the velocity pro_le
in that layer by a quadratic formula\ and still ignored in
the condensate _lm inertia and pressure gradient\ energy
convection and liquid subcooling[ By employing Shek!
riladze and Gomelauri|s model\ Rose ð6Ł took further
account of the pressure gradient e}ect upon the forced!
convection _lm condensation on a horizontal circular
tube with vertical vapor down~ow using potential ~ow
theory[ Rose proposed a good empirical expression for
the mean Nusselt number and found that the inclusion
of pressure gradient led to a small decrease in the mean
heat!transfer coe.cient[ Gaddis ð7Ł treated the full two!
phase boundary!layer equations through series expan!
sion to _nd that the separation angle of condensate _lm

is around 9[51p rad agreed with Honda and Fujii|s ð8Ł
value and also con_rmed the relation\ Nu � zRe[ As for
the experimental works and e}ects of the vapor bound!
ary!layer separation\ they may be seen in a review paper
by Rose ð09Ł[ It indicated that measurements for steam
at high velocity give lower heat!transfer coe.cients\ while
those data for R!002 give heat!transfer coe.cients higher
than the theoretical values\ compared with Fujii et al[
ð00Ł[

All the above works relate to natural convection and:or
a forced ~owing condensation of an isothermal circular
tube[ Although\ for laminar _lm condensation with uni!
form properties and negligible vapor velocity\ the
assumptions of the simple Nusselt theory have been
found in later and more complete studies to be generally
valid and the tube wall temperature has been observed
to vary around the tube by amounts comparable with the
mean temperature di}erence across the condensate _lm[
The theory seems to be somewhat in accordance with
experiment[ Fujii et al[ ð5Ł showed that the wall tem!
perature may often vary signi_cantly over the cir!
cumferential length of the tube\ even if the coolant tem!
perature inside the tube is constant[ Michael et al[ ð01Ł
also found that the di}erence between vapor saturated
temperature and the local wall non!uniform temperature
usually varies with {0−A cos f| pro_le for forced con!
vection _lm condensation problem\ while at high vapor
velocities the measured wall temperature pro_le is more
uniform than predicted[ For both natural convection and
forced convection _lm condensation on a circular tube
with a variable wall temperature "a cosine distribution#\
Memory and Rose ð02Ł found that the local condensate
_lm thickness and heat ~ux depend markedly on the
amplitude of the surface temperature variation[ However\
the mean gravity!dominated condensation heat transfer
coe.cient is virtually una}ected by a surface temperature
variation[ As for the forced!convection _lm conden!
sation\ ignoring the pressure gradient case investigated by
Memory et al[ ð03Ł\ the mean condensation heat transfer
increases as the wall temperature variation amplitude
goes up[ However\ their higher mean condensing heat!
transfer coe.cients seem to be in contradiction with
Honda and Fujii|s ð8Ł lower coe.cients through a con!
jugate approach[ They showed that reasons for this
apparent anomaly are advanced[ In fact\ the present
study\ with further inclusion of pressure gradient e}ect\
can modify and try to explain the signi_cant discrepancy
between them[

Our major aim is to present a generalization of the
model of Memory et al[ ð03Ł by further inclusion of the
pressure gradient e}ect[ The extended model will be
applicable to _lmwise condensation from ~owing pure
vapors onto horizontal tubes\ including taking account
of the pressure gradient and vapor shear e}ects in a
general fashion\ and being amendable to any physically
relevant initial condition[
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1[ Analysis

Consider a horizontal circular tube immersed in a
downward ~owing pure vapor which is at its saturation
temperature Tsat and moves at uniform velocity U�[ The
wall temperature Tw may be non!uniform and below the
saturation temperature[ Thus\ condensation occurs on
the wall and a continuous _lm of liquid condensate runs
downward over the tube under the combined action of
gravity\ pressure gradient forces and interfacial vapor
shear[

The physical model under consideration is shown in
Fig[ 0[ The conservation of mass\ momentum and energy
for the steady laminar layer ~ow are described by the
following equations]

mý � r
d
dx g

d

9

u dy "0#

m
11u

1y1
¦"r−rv#` sin f−

dp
r df

� 9[ "1#

hfgmý � k
1T
1y

� k
DT
d

"2#

where h?fg � hfg¦2CPDT:7 is the latent heat of conden!
sation corrected for condensate subcooling by Rohsenow
ð04Ł[

Applying the Bernoulli equation to the pressure gradi!

Fig[ 0[ Physical model and coordinate system[

ent term in equation "1# along the interface and assuming
the condensate _lm thickness to be neglected when com!
pared with the radius of the tube\ one may rewrite the
momentum equation

m
11u

1y1
� −"r−rv#` sin f−rvue

due

r df
"3#

subjected to the following boundary conditions]

1u
1y

� td:m\ at y � d "4#

and

u � 9\ at y � 9[ "5#

Next\ the interfacial boundary condition\ i[e[ the vapor
shear\ is to be modeled[ A good approximation for high
condensation rates\ is given by Shekriladze and Gome!
lauri|s ð3Ł model as]

td � mýue[ "6#

According to potential ~ow theory\ for a uniform ~ow
with velocity U� past a circular tube\ one may derive the
vapor velocity at the edge of boundary!layer as]

ue � U�1 sinf "7#

and then obtain the pressure gradient and interface vapor
shear by using equation "7#]

rvue

due

r df
� rvU

1
�3 sin 1f:D "8#

and

td � mýU�1 sinf[ "09#

Substituting equations "7# and "8# into equation "3#
and its boundary conditions\ one can solve the momen!
tum equation as follows]

u � mýU�1y sin f:m¦ð"r−rv#` sin f

¦rvU
1
�3 sin 1f:DŁ0yd−

0
1

y11:m[ "00#

The energy equation "2#\ is a balance between the latent
heat released at the interface through condensation and
heat ~ux conducted through the condensate _lm to the
tube wall surface[ However\ the wall temperature dis!
tribution should be speci_ed or _tted by measured data\
then one can calculate the mean wall temperature as]

TÞw �
0
p g

p

9

Tw"f# df "01#

and express the temperature di}erence across the _lm by
adopting the following form from Memory et al[ ð03Ł]

DT �"Tsat−TÞw#"0−A cos f# � DT"0−A cos f# "02#

where\ A is a constant "9 ¾ A ¾ 0# and denotes the wall
temperature variation amplitude[

Inserting equation "2# into equations "0# and "00# to
eliminate mý\ and integrating the updating equation "0#
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by using equation "00# and introducing the dimensionless
parameters yields]

1d�
d
df$d�"0−A cos f# sin f¦

0
2

d�2F sin f

¦
3
2

d�2P sin 1f%� 0−A cos f "03#

with the boundary condition]

dd�: df � 9 at f � 9 "04#

where]

d� �"d:D#zRe "05#

F �"Ra:Ja#:Re1^ P �"rv:r#Pr:Ja[ "06#

The _rst term inside the derivative in equation "03#
results from the interfacial shear stress while the term
involving P is the e}ect of pressure gradient due to poten!
tial ~ow[ When both of these terms are omitted\ equation
"03# reduces to the pure natural!convection _lm con!
densation\ i[e[ the Nusselt!type condensation problem[

Applying the boundary condition\ equation "04# into
equation "03#\ one may obtain the expression for the
condensate _lm thickness at f � 9 as]

0:"1d�9#−d�9−
0
2
"F¦7P#d�9

2 � 9[ "07#

Note that the above nonlinear equation can be solved for
the condensate _lm thickness at f � 9\ d�9 by using the
NewtonÐRaphson iteration method[

Before proceeding to obtain the solution of equation
"03#\ and thence to calculate the heat transfer rate for the
horizontal tube\ it is to be noted that the condensate _lm
~ow may separate at the following condition]

1u:1y=y�9 ¾ 9[ "08#

Thus\ this condition may also be obtained by equation
"03# in the following relationship]

0−A cos f¦F"0¦7P cos f#d�1 � 9[ "19#

If f � fc satis_es the above equation\ fc is called the
critical angle\ i[e[

dd�: df : � as f : fc[ "10#

Although d� is unknown\ it may be solved by means of
a fourth!order RungeÐKutta integration by taking step
size Df � 9[994> and then substituting into equation "19#
by bisection method to determine the position or value
of fc[ The algorithm is very unstable and sensitive to the
calculated d� at f close to fc\ so we are required to check
if the condensate _lm thickness will abruptly become
extra thick\ i[e[

d� : � as f : fc[ "11#

Obviously\ when P � 9 or F − 7P it satis_es\ fc � p[ In
this case the condensate _lm will separate or drip o} at
the bottom of the tube[ Otherwise\ F ³ 7P\ the critical
angle lies in\ p:1 ³ fc ¾ p\ and the condensate _lm will

drip o} before reaching the bottom of the tube[ Since for
the latter case\ solutions will not be possible beyond fc\
one may ignore the contribution to heat transfer due to
an extra large _lm thickness[

The local heat ~ux q is given by]

q � kDT:d � kDTÞ"0−A cos f#:d "12#

which may be non!dimensionalized to give]

q� � qD:"zRe kDTÞ# �"0−A cos f#:d�[ "13#

The mean heat ~ux for the circular tube is given by]

q¹ �
1

pD g
pD:1

9

q dx � g
p

9

q df:p[ "14#

As in the Nusselt theory\ the dimensionless local heat
transfer coe.cient can be shown to be]

Nu �
D
d

� zRe:d�[ "15#

We are also interest in an expression for the overall mean
heat transfer coe.cient[ Integrating equation "15# over a
whole tube\ but neglecting the contribution to the heat
transfer beyond fc based on the whole surface area gives]

Nu � q¹D:"kDTÞ# "16#

NuRe−0:1 � g
fc

9

"0:d�#"0−A cos f# df:p[ "17#

It is to be noted that\ at low vapor velocity\ equation
"17# blends with the Nusselt type solution[ Furthermore\
there are two asymptotic cases explained as follows[

Firstly\ for the case of F Ł 0\ i[e[ for very slow vapor
~ow\ the gravity force is much larger than vapor shear
force and the pressure gradient due to potential ~ow[
Hence\ the problem reduces to the natural!convection
_lm condensation\ i[e[ Nusselt!type condensation[ After
omitting the _rst term and _nal term in equation "03#\
one has]

1
2

d�
d
df

"d�2F sin f# � 0−A cos f[ "18#

By separation of variables\ one may obtain]

d� � F−0:3"sin f#−0:2$1 g
f

9

"0−A cos f#"sin f#0:2 df%
0:3

[

"29#

Thus\ one can obtain the local Nusselt number from
equation "15#[ Next\ one may also obtain the overall
mean Nusselt number from equation "17# as follows]

Nu"Ja:Ra#0:3 � g
fc

9 6"0−A cos f#"sin f#0:2 df

$1 g
f

9

"0−A cos f#"sin f#0:2 df%
−0:3

7 df:p[ "20#

It is to be noted that\ for A � 9\ an isothermal wall
surface\ Nu"Ja:Ra#0:3 � 9[617[
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Secondly\ for the F ð 0 cases\ the other asymptotic
cases] forced!convection dominated _lm condensation\
their critical angles fc ³ p always when F ³ 7P[ For pure
forced!convection _lm condensation\ one may put F � 9
in equation "06# and then obtain the mean heat transfer
coe.cients calculations using equations "03#Ð"17#[ By the
way\ if one put P � 9\ the present work will reduce to be
the same results with Memory et al[ ð03Ł[

2[ Results and discussion

In this section\ numerical results for mixed!convection
_lm condensation of downward ~owing vapor on a hori!
zontal tube are presented in two parts[ In the _rst part\
results of the condensate _lm thickness and its cor!
responding critical angles are obtained and discussed for
a wide range of F\ and a practical range of A and P[ In
practical condensation\ we choose the cases of P � 0 and
2\ because P is usually less than 0[9 for steam\ and less
than 3[9 for the refrigerants[ Then\ the second part will
indicate and discuss the performance of heat transfer
rates or Nusselt number for the same range of F\ A\ and
P as the _rst part[

2[0[ Characteristics of ~ow dynamics] condensate _lm
thickness d�^ critical an`le fc

Firstly\ for F � 9 and P � 9 case\ i[e[ for pure forced!
convection _lm condensation\ the results of numerical
solutions from equation "03# are shown in Fig[ 1a and
just coincide with those of Memory et al[ ð03Ł[ It is seen
that for isothermal tube wall "ShekriladzeÐGomelauri
case\ A � 9#\ the _lm thickness increases continuously
with f[ For larger values of A "stronger temperature
variation around the tube# the _lm thickness at _rst goes
down to a minimum before increasing[ It is noted that
when A � 0\ i[e[ DT � 9 at f � 9\ its d� is minimum but
not zero\ which may be obtained directly from equation
"03#[ Secondly\ for F � 09\ P � 0 and P � 2 two cases
shown in Fig[ 1b and c\ i[e[ for natural convection domi!
nated _lm condensation\ d� increases directly with f[ In
fact\ these results blend with Nusselt|s solution[ Besides\
at the extreme value A � 0\ when DT � 9\ at f � 9\ it is
seen that d� is zero and also agrees with Memory and
Rose ð02Ł[

Furthermore\ it also indicates that as compared to Fig[
1b and c\ the condensate _lm for P � 2 case separates
more ahead or at smaller fc than that for P � 0 case[
This di}erence shows that the pressure gradient plays a
signi_cant e}ect upon the condensate _lm ~ow and can!
not be ignored like Memory et al[ ð03Ł[ If one ignores
the e}ect of pressure gradient\ the condensate _lm ~ow
remain intact over the entire tube[ However\ according
to the later works from Memory and Rose ð05Ł and Yang
and Hsu ð06Ł\ the phenomenon of condensate _lm ~ow

Fig[ 1[ "a# "b# "c#[ Dependence of dimensionless local _lm thick!
ness on the wall temperature variation amplitude[
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separation occurs because the pressure gradient e}ect
exists in a forced ~ow[ This e}ect may explain the con!
tradictions between Memory et al[ ð03Ł and Honda and
Fujii ð8Ł[

2[1[ Performance of heat transfer] local heat ~ux q�\
mean heat transfer Nu Re−0:1

2[1[0[ Pro_le of the local heat ~ux
In Fig[ 2\ the results from equation "13# show that\ for

the isothermal wall\ the local heat ~ux decreases con!
tinuously around the tube[ As A increases\ the local heat
~ux _rst rises where the e}ect of the increasing DT out!
weighs that of the increasing _lm thickness[
Subsequently\ the local heat ~ux reaches a maximum at
a location on the rear half of the tube before decreasing
to zero as the _lm thickness becomes in_nite[ All three
cases have the similar trend\ the higher F or lower vapor
velocity is\ the higher the local heat ~ux is[

2[1[1[ Effect of F "vapor ~ow velocity# and P "pressure
`radient#

The following sections regarding the mean heat trans!
fer coe.cient or mean Nusselt number are obtained
numerically from equation "17#[ Numerical integrations
with a step size twice as large produced a change in
the predicted mean Nusselt number of less than 9[0)[
Firstly\ for no pressure gradient e}ect "P � 9#\ the mean
Nusselt result is just the same form as that of Memory et
al[ ð03Ł and illustrated in Fig[ 3a[ In addition\ for an
isothermal wall case "A � 9#\ the present result reduces
to the ShekriladzeÐGomelauri model[ However\ Memory
et al[ ð03Ł used the ShekriladzeÐGomelauri shear stress
approximation without considering the pressure gradient

Fig[ 2[ Dependence of dimensionless local heat ~ux on the wall
temperature variation amplitude A[

Fig[ 3[ "a# "b# "c#[ Dependence of mean Nusselt number on F
for combined forced and natural convection condensation[
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e}ects\ so they overestimate the mean vapor!side heat!
transfer coe.cient[ Hence\ the present results with fur!
ther accounting for the pressure gradients "including
P � 0 and P � 2#\ as shown in Fig[ 3b and c\ make
the mean heat transfer coe.cients lower and reasonable\
above all for lower F[ Besides\ there exists a transition
zone near the Nusselt type|s line around from F � 0 to
F � 09[

2[1[2[ Effect of A "wall temperature variation
amplitude#

Figure 4 shows that in general\ the mean Nusselt num!
ber increases insigni_cantly with A for P � 9 case no
matter what the values of F are[ But\ as P increases\ the
mean Nusselt numbers decrease more appreciably with
increasing A for both natural convection dominated
"F − 09# condensation and forced convection dominated
"F ³ 0# condensation[ This is the reason that if one
ignores the pressure gradient i[e[ P � 9\ the mean Nusselt
number will be overpredicted[

3[ Concluding remarks

"0# The present model with further inclusion of pressure
gradient e}ect may compensate the discrepancy
between the works from Memory et al[ ð03Ł and
Honda and Fujii ð8Ł[ The present result appears to
be adequate and can apply to the combined natural
convection and forced convection _lm condensation[

"1# When P � 9\ the mean heat transfer coe.cient is
increasing insigni_cantly with A\ whereas as P is
included and increases\ the mean heat transfer
coe.cient decreases appreciably with A[

Fig[ 4[ Dependence of mean Nusselt number on parameter A
for combined forced and natural convection condensation[

"2# The mean heat transfer coe.cient is also nearly
una}ected by the pressure gradient for the lower
vapor velocity once its corresponding fc � p[ As for
the higher vapor velocity "or higher F#\ the mean
heat transfer coe.cient decreases signi_cantly with
increasing the pressure gradient e}ect[

"3# Due to neglecting waviness in the condensate _lm
layer\ the present model should be cautiously applied
when Re × 2×094[
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